地球磁场

地球磁场的图片和资料:

鸟类用右眼“看”地球磁场!

地球磁场

摘要

地球磁场,简言之是偶极型的,近似于把一个磁铁棒放到地球中心,使它的N极大体上对着南极而产生的磁场形状。当然,地球中心并没有磁铁棒,而是通过电流在导电液体核中流动的发电机效应产生磁场的。地球磁场不是孤立的,它受到外界扰动的影响,宇宙飞船就已经探测到太阳风的存在。太阳风是从太阳日冕层向行星际空间抛射出的高温高速低密度的粒子流,主要成分是电离氢和电离氦。因为太阳风是一种等离子体,所以它也有磁场,太阳风磁场对地球磁场施加作用,好像要把地球磁场从地球上吹走似的。尽管这样,地球磁场仍有效地阻止了太阳风长驱直入。在地球磁场的反抗下,太阳风绕过地球磁场,继续向前运动,于是形成了一个被太阳风包围的、慧星状的地球磁场区域,这就是磁层。

地球磁场地球强大的磁场是保护人类免于遭受外太空各种致命辐射的生死屏障,然而日前,英美科学家发现,在过去的200年内,地球的磁场正在急剧地衰弱。科学家们预言,照这种速度发展下去,在未来的1000年内,地球磁场可能会完全消失。

地球磁场 基本概述

     地球磁场地球磁场,简言之是偶极型的,近似于把一个磁铁棒放到地球中心,使它的N极大体上对着南极而产生的磁场形状。当然,地球中心并没有磁铁棒,而是通过电流在导电液体核中流动的发电机效应产生磁场的。地球磁场不是孤立的,它受到外界扰动的影响,宇宙飞船就已经探测到太阳风的存在。太阳风是从太阳日冕层向行星际空间抛射出的高温高速低密度的粒子流,主要成分是电离氢和电离氦。因为太阳风是一种等离子体,所以它也有磁场,太阳风磁场对地球磁场施加作用,好像要把地球磁场从地球上吹走似的。尽管这样,地球磁场仍有效地阻止了太阳风长驱直入。在地球磁场的反抗下,太阳风绕过地球磁场,继续向前运动,于是形成了一个被太阳风包围的、慧星状的地球磁场区域,这就是磁层。

地球磁层位于地面600~1000公里高处,磁层的外边界叫磁层顶,离地面5~7万公里。在太阳风的压缩下,地球磁力线向背着太阳一面的空间延伸得很远,形成一条长长的尾巴,称为磁尾。在磁赤道附近,有一个特殊的界面,在界面两边,磁力线突然改变方向,此界面称为中性片。中性片上的磁场强度微乎其微,厚度大约有1000公里。中性片将磁尾部分成两部分:北面的磁力线向着地球,南面的磁力线离开地球。

1967年发现,在中性片两侧约10个地球半径的范围里,充满了密度较大的等离子体,这一区域称作等离子体片。当太阳活动剧烈时,等离子片中的高能粒子增多,并且快速地沿磁力线向地球极区沉降,于是便出现了千资百态、绚丽多彩的极光。由于太阳风以高速接近地球磁场的边缘,便形成了一个无碰撞的地球弓形激波的波阵面。波阵面与磁层顶之间的过渡区叫做磁鞘,厚度为3~4个地球半径。地球磁层是一个颇为复杂的问题,其中的物理机制有待于深入研究。磁层这一概念近来已从地球扩展到其他行星。甚至有人认为中子星和活动星系核也具有磁层特征。

地球磁场 形成原因

     地球磁场对地球磁场起源的探索,早在公元1600年前后就已经开始了。大家都会知道,有电荷在运动才会产生磁场,因此地球的磁场应该与地球内部的带电结构有关。通常物质所带的正电和负电是相等数量的,但由于地球核心物质受到的压力较大,温度也较高,约6000°C,内部有大量的铁磁质元素,物质变成带电量不等的离子体,即原子中的电子克服原子核的引力,变成自由电子,加上由于地核中物质受着巨大的压力作用,自由电子趋于朝压力较低的地幔,使地核处于带正电状态,地幔附近处于带负电状态,情况就象是一个巨大的“原子”。 科学家相信,由于地核的体积极大,温度和压力又相对较高,使地层的导电率极高,使得电流就如同存在于没有电阻的线圈中,可以永不消失地在其中流动,这使地球形成了一个磁场强度较稳定的南北磁极。另外,电子的分布位置并不是固定不变的,并会因许多的因素影响下会发生变化,再加上太阳和月亮 的引力作用,地核的自转与地壳和地幔并不同步,这会产生一强大的交变电磁场,地球磁场的南北磁极因而发生一种低速运动,造成地球的南北磁极翻转。 太阳和木星亦具有很强的磁场,其中木星的磁场强度是地球磁场的20至40倍。太阳和木星上的元素主要是氢和少量的氦、氧等这类较轻的元素,与地球不同,其内部并没有大量的铁磁质元素,那么,太阳和 木星的磁场为何比地球还强呢?木星内部的温度约为30000°C左右,压力也比地球内部高的多,太阳内部的 压力、温度还要更高。这使太阳和木星内部产生更加广阔的电子壳层,再加上木星的自转速度较快,其自 转一周的时间约10小时,故此其磁场强度自然也要比地球高的强。事实上,如果天体的内部温度够高,则天体的磁场强度与其内部是否含有铁、钴、镍等铁磁质元素无关。由于太阳、木星内部的压力、温度远高于地球,因此,太阳、木星上的磁场要比地球磁场强的多。而火星、水星的磁 场比地球磁场弱,则说明火星、水星内部的压力、温度远低于地球。

关于地球磁场的形成原因,一种关于地球磁场成因的假说认为:地球磁场的形成原因和其它行星的磁场的形成原因是类似的,地球或其它行星由于某种原因而带上了电荷或者导致各个圈层间电荷分布不均匀。这些电荷由于随行星的自转而做圆周运动,由于运动的电荷就是电流,电流必然产生磁场。这个产生的磁场就是行星的磁场,地球的磁场也是类似的原因产生的。这个假说和各个行星磁场的有无和强弱现象符合的非常完美。

一项新研究显示,地球磁场形成于34.5亿年前。这表明,地球磁场形成的时间比先前人们认为的提前约25亿年。地球磁场形成的时间与地球上最初生命的形成时间相符,地球磁场的形成有效的避免了地球上最初的生命形态遭受太阳磁辐射的破坏。

这项研究成果发表在2010年3月5日的《科学》杂志(Science)上。这个时期正好在生命发展的最早阶段,处于地球被星际碎片撞击和地球大气中充满氧气这两个时期之间。先前几项研究认为,地球磁场是使地球免于太阳致命辐射的必要屏障,太阳辐射能够清除掉一个行星的大气层,使上面的水份彻底蒸发掉,同时扼杀掉行星表面上的生命。多伦多大学地球物理学家戴维·邓洛普(David Dunlop)认为:“研究成果将地球磁场产生的分界线往后推,回到了你能够理性期待的测量地球的时期。”

研究人员测量了在南非卡普瓦尔克拉通(Kaapvaal craton)所发现的一些特定岩石的磁场强度,普瓦尔克拉通地区的地质可以追溯到30多亿年前。然而,仅仅找到古老的岩石是远远不够的。据这项新研究的合著者、罗彻斯特大学的研究者约翰·塔都诺(John Tarduno)说:“寻找岩石的过程适合用‘金发姑娘理论’(Goldilocks theory,形容不冷不热,恰到好处的一种状态)来形容。”岩石在形成时,其里面的铁矿物记录下了地球磁场的强度与方向,但是如果岩石在后来的地质过程中被加热,它上面的这些信息也可能会丢失或者被改写。塔都诺说:“我们必须找到一种刚好具有足够的铁来记录磁场特征的岩石,但是铁含量又不能太高,如果铁含量过高,表明它曾经受到过后来化学变化的影响。”南非的绿岩带(Greenstone Belt)刚好有这种岩石:其中的石英晶体不到两毫米长,根植于石英晶体中的含铁磁铁矿为纳米级大小。塔都诺说:“石英起到了完美的‘太空舱’的作用,它没有受到后来事件的影响,但它里面包含有那些我们需要研究的铁。”

塔都诺跟他的同事在2007年就已经研究过类似的岩石,并且发现形成于32亿年前的那种岩石具有的磁场强度为现今地球磁场强度的一半。塔都诺表示,使用一种专门设计的磁力计以及改进后的实验技术,研究团队在具有34.5亿年历史的岩石中检测到了磁场信号,这个磁场的强度处于现今地球磁场强度的50%到70%之间。塔都诺说:“当我们思索生命的起源时,有两条线索需要追踪,一条线索是水,但是同时必须要有一个磁场(另一条线索),因为磁场可以保护大气免受侵蚀以及水被完全蒸发。”他补充说,今天的火星可能是干燥的,因为火星在早期的时候失去了它的磁场。

为了确定这种早期磁场是否足以能够阻挡住太阳的辐射雨(rain ofradiation),研究团队必须要知道那个时期太阳的状况。天文学家通过对年轻的、类似太阳的恒星的观察值来推断当时地球所要面临的太阳风强度。专家表示,年轻的太阳可能比今天的太阳旋转速度要快,这种快速的旋转为一个强大的磁场提供了动力,这个磁场使太阳大气加热,激起了大量带电粒子组成的太阳风的活动。研究团队计算出,地球磁场抵消太阳风的临界点距地球中心的距离大约仅为5个地球半径,不到现今10.7个地球半径的一半。34.5亿年前从太阳定期地抵达地球的辐射量,与现今最活跃的太阳风暴(solar storm)袭击地球时的能力相当。由太阳风与地球磁场相互作用产生的北极光(auroraborealis),在当时能够在距现今的纽约市相当的纬度位置内观察到。

苏格兰圣安德鲁斯大学(University of St. Andrews)天文学家莫伊拉·贾丁(Moira Jardine)表示,这项研究“能够用于指导我们寻找其它有生命的行星。”天文学家以后可能将更多地关注从那些更年长的、不太活跃的星体,或者寻找那些具有自己磁场的行星。迄今为止,尽管人们还没有找到具有磁场的太阳系外行星(extrasolar planet),贾丁和塔都诺仍然持很乐观,塔都诺说:“磁场正是是我们需要考虑的另外一个参数。”[1]

地球磁场 特性起源

     地球的磁性,是地球内部的物理性质之一。地球是一个大磁体,在其周围形成磁场,即表现出磁力作用的空间,称作地磁场。它和一个置于地心的磁偶极子的磁场很近似,这是地磁场的最基本特性。地磁场强度很弱,这是地磁场的另一特性,在最强的两极其强度不到10-4(T),平均强度约为0.6x10-4(T),而它随地点或时间的变化就更小,因此常用(γ),即10 -9(T)做为磁场强度单位。 

地球磁场的来源,早期历史上曾有来自北极星的传说,但是到公元17世纪初就已经认识到地球本身就是一个巨大的磁体,不过当时仍不清楚地球磁场是怎样产生的。随着科学的发展,对于地球磁场观测和地球结构的研究不断增多和深入,对地球磁场的来源先后提出了10多种学说。这里按照历史的先后对一些各有一定根据或设想的地球磁场来源学说作简单介绍:

(1)永磁体学说,是最早提出的一种学说,认为地球内部存在巨大的永磁体,由这永磁体产生地球磁场,但后来认识到地球内部温度很高,不可能存在永磁体;

(2)内部电流学说,认为地球内部存在巨大的电流,形成巨大电磁体产生地球磁场,但是既未观测到这种巨大电流,而且巨大电流也会很快衰减,不会长期存在;

(3)电荷旋转学说(公元1900年,简写作1900),认为地球表面和内部分别分布着符号相反、数量相等的电荷,由地球自转而形成闭合电流,由此电流产生磁场,但这学说缺乏理论和实验基础;

(4)压电效应学说(1929),认为在地球内部物质在超高压力下使物质中的电荷分离,电子在这样的电场中运动而产生电流和磁场。但理论计算出这样的磁场仅有地磁场的约千分之一(10-3);

(5)旋磁效应学说(1933),认为地球内的强磁物质旋转可以产生地球磁场,但这种旋磁效应产生的磁场只有地球磁场的大约千亿分之一(10-11);

(6)温差电效应学说(1939),认为地球内部的放射性物质产生的热量,使熔融物质发生连续的不均匀对流,这样产生温差电动势和电流,由此电流产生地球磁场,但理论估计也同地球磁场不符合;

(7)发电机学说(1946-1947),认为是地球内部的导电液体在流动时产生稳恒的电流,由这电流产生地球磁场;

(8)旋转体效应学说(1947),是根据少数天体观测得到的经验规律,认为具有角动量的旋转物体都会产生磁矩,因而产生磁场。这一学说需要使用一无科学根据的常数,5年后又被提出这一学说的科学家根据精密的实验结果加以否定了;

(9)磁力线扭结学说(1950),认为在地球磁场磁力线的张力特性和地核的较差自转,会使原始微弱的地球磁场放大,由此产生地球磁场;

(10)霍尔效应学说(1954),认为在地球内部由于温度不均匀产生的温差电流和原始微弱磁场的同时使用下,会由霍尔效应产生霍尔电动势和霍尔电流,由此产生地球磁场;

(11)电磁感应学说(1956),认为由太阳的强烈磁活动通过带电粒子的太阳风到达地球后,会通过地球内部的电磁感应和整流作用产生地球内部的电流,由此产生地球磁场。在这些学说中,只有发电机学说(又称磁流体发电机学说)地球内部构造与测、实验和理论研究上得到较多的证认,是目前研究和应用较多的地球磁场学说。

地球磁场 历史发现

     历史上,第一个提出地磁场理论概念的是英国人吉尔伯特。他在1600年提出一种论点,认为地球自身就是一个巨大的磁体,它的两极和地理两极相重合。这一理论确立了地磁场与地球的关系,指出地磁场的起因不应该在地球之外,而应在地球内部。
  
1893年,数学家高斯在他的著作《地磁力的绝对强度》中,从地磁成因于地球内部这一假设出发,创立了描绘地磁场的数学方法,从而使地磁场的测量和起源研究都可以用数学理论来表示。但这仅仅是一种形式上的理论,并没有从本质上阐明地磁场的起源。现在科学家们已基本掌握了地磁场的分布与变化规律,但是,对于地磁场的起源问题,学术界却一直没有找到一个令人满意的答案。目前,关于地磁场起源的假说归纳起来可分为两大类,第一类假说是以现有的物理学理论为依据;第二类假说则独辟蹊径,认为对于地球这样一个宇宙物体,存在着不同于现有已知理论的特殊规律。属于第一类假说的有旋转电荷假说。它假定地球上存在着等量的异性电荷,一种分布在地球内部,另一种分布在地球表面,电荷随地球旋转,因而产生了磁场。这一假说能够很自然地通过电与磁的关系解释地磁场的成因。但是,这个假说却有一个致命缺点,首先它不能解释地球内外的电荷是如何分离的;其次,地球负载的电荷并不多,由它产生的磁场是很微弱的,根据计算,如果要想得到地磁场这样的磁场强度,地球的电荷储量需要扩大1亿倍才行,理论计算和实际情况出入很大。

以地核为前提条件的地磁场假说也属于第一类假说,弗兰克在这类假说中提出了发电机效应理论。他认为地核中电流的形成,应该是地核金属物质在磁场中做涡旋运动时,通过感应的方式而发生的。同时,电流自身形式的场就是连续不断的再生磁场,好像发电机中的情形一样。弗兰克所建立的模型说明了怎样实现地磁场的再生过程,解释了地磁场有一定的数值。但是在应用这种模型的时候,却很难解释地核中的这种电路是怎样通过圆形回路而

闭合的。此外,这个模型也没有考虑到电流对涡旋运动的反作用,而这种反作用是不允许涡旋分布于平行赤道面的平面内的。属于第一类假说的还有漂移电流假说、热力效应假说和霍尔效应假说等,但这些假说都不能全面地解释地磁场的奇异特性。关于地磁场起源还有第二类假说,这其中最具代表性的就是重物旋转假说。

1947年,布莱克特提出任意一个旋转体都具有磁矩,它与旋转体内是否存在电荷无关。这一假说认为,地球和其他天体的磁场都是在旋转中产生的,也就是说星体自然生磁,就好像电荷转动能产生磁场一样。但是,这一假说在试验和天文观测两方面都遇到了困难。在现有的实验条件下,还没有观察到旋转物体产生的磁效应。而对天体的观测结果表明,每个星球的磁场分布状况都很复杂,尚不能证明星球的旋转与磁场之间存在着必然的依存关系。因此上说,关于地磁场的起源问题,学术界仍处在探索与争鸣之中,尚没有一个具有相当说服力的理论,对地磁场的成因作出解释。

地球磁场 变化规律

     地磁场的形成具有一定特殊性,按照旋转质量场假说,地球在自转过程中产生磁场。但是,从运动相对性的观点考虑,居住在地球上的人是不应该感受到地磁场的,因为人静止于地球表面,随地球一同转动,所以地球上的人是无法感觉到地球自转产生的磁场效应的。通常所说的地磁场只能算作地球表面磁场,并不是地球的全球性磁场(又称空间磁场),它是由地核旋转形成的。地球的内部结构可分为地壳、地幔和地核。美国科学家在试验中发现,地球内外的自转速度是不一样的,地核的自转速度大于地壳的自转速度。也就是说,地球表面的人虽然感觉不到地球的自转,但却能感觉到地核旋转所产生的质量场效应,就是它产生了地球的表面磁场。科学家在研究中还发现,地核的自转轴与地球的自转轴不在一条直线上,所以由地核旋转形成的地磁场两极与地理两极并不重合,这就是地磁场磁偏角的形成原因。科学家们在对地磁场的研究中发现,地磁场是变化的,不仅强度不恒定,而且磁极也在发生变化,每隔一段时间就要发生一次磁极倒转现象。

早在二十世纪初,法国科学家布律内就发现,70万年前地磁场曾发生过倒转。1928年,日本科学家松山基范也得出了同样的研究结果。第二次世界大战后,随着古地磁研究的迅速发展,人们获得了越来越多的地磁场倒转证据。如岩浆在冷却凝固成岩石时,会受到地磁场的磁化而保留着像磁铁一样的磁性,其磁场方向和成岩时的地磁场方向一致。科学家在研究中发现,有些岩石的磁场方向与现代地磁场方向相同,而有些岩石的磁场方向与现代地磁场方向正好相反。科学工作者通过陆上岩石和海底沉积物的磁力测定,及洋底磁异常条带的分析终于发现,在过去的7600万年间,地球曾发生过171次磁极倒转。距今最近的一次发生在70万年前,正如布律内所指出的那样。

地球磁场 倒转原因

     根据地磁场起源理论,地磁场磁极之所以发生倒转,是由地核自转角速度发生变化而引起的。地壳和地核的自转速度是不同步的,现阶段地核的自转速度大于地壳的自转速度。然而,5.8亿年前,情况却不是这样,那时地球表面呈熔融状态,月球也刚刚被俘获,地球从里到外的自转速度是一致的,地球表面不存在磁场。但是,随着地球向月球传输角动量,地球的自转角速度越来越小。同时,地球也渐渐形成了地壳、地幔和地核三层结构。地球自转角动量的变化首先反映在地壳上,出现了地壳自转速度小于地核自转速度的情形。这时,在地球表面第一次可以感受到磁场的存在,地核以大于地壳的自转速度形成了地磁场。按照左手定则,磁场的N极在地理南极附近,磁场的S极在地理北极附近。地壳与地核自转角速度不同步,这种情形并不能长久地保持下去,地核必然通过地幔软流层物质向地壳传输角动量,其结果是地核的自转角速度逐渐减小,地壳的自转角速度逐渐增大。当地壳与地核的自转角速度此增彼减而最终一致时,地磁场就会在地球表面消失。

地核与地壳间的角动量传输并不会到此为止,在惯性的作用下,地壳的自转角速度还在继续增大,地核的自转角速度继续减小,于是出现了地壳自转角速度大于地核自转角速度的情形。这时,在地球表面就会感受到来自地核逆地球自转方向的旋转质量场效应。按照左手定则判断,新形成的地磁场的N极在地理北极附近,S极在地理南极附近。从较长的时期看,整个地球的自转速度处在减速状态,但地壳与地核间的相对速度却是呈周期性变化的,

这就是每隔一段时间地球磁场就要发生一次倒转的原因。据测定,地磁场发生倒转前有明显的预兆,地球的磁场强度减弱直至为零,随后,约需一万年的光景,磁场强度才缓缓恢复,但是,磁场方向却完全相反。目前,地球磁场强度有逐渐减弱的趋势,在过去的4000年中,北美洲的磁场强度已减弱了50%,这说明地核相对地壳的速度差正在缩小。值得说明的是,无论地球表面测得的地磁场方向如何发生变化,但是,在太空中地磁场的方向却始终是不变的。因为在太空中测得的地磁场,是整个地球自转产生的旋转质量场效应,并不会因为地壳与地核相对速度的改变而发生变化。根据左手定则,在太空中测得的地磁场的N方向始终在地理南极上空。
  
在电磁感应效应中,通电导体产生的磁场强度与电流强度成正比,即与导体内“定向移动”的自由电子数目成正比。而每个电子的自旋角动量又是恒定的,所以磁场强度实际上是与所有电子的自旋角动量之和成正比。同理,宏观物体产生的磁场强度,也应与旋转质量场的角动量成正比,即与物体的质量和自旋角速度成正比,与质量场的旋转半径(观测点到物体质心的距离)成反比。用公式表示为:

H = f mω/r = f 0 m / T r (f 0为常数,T为自转周期,r为旋转质量场半径)

根据这一公式,在地球表面测得的磁场强度H,只与地核的质量成正比,角速度ω的取值为地壳与地核自转角速度之差,r为地球的半径(地磁场强度为5×10-5特斯拉)。而地球在太空中形成的空间磁场,其磁场强度与整个地球的质量成正比,与地球的自转角速度成正比(近似值),与观测点到地球中心的距离成反比。因此,在近地球的宇宙空间,地球所形成的空间磁场强度大于地表的磁场强度。空间磁场的最大特点是磁极恒定,不会像地球表面磁场那样发生磁极倒转现象。

地球磁场从来就没有翻转过

当居里告诉人们,永磁不耐高温时。人们开始意识到地球磁场就应该是一个电磁场。电磁场遵循麦克斯韦方程原理,所以在地球里面一定有电流在流动。依据我们测得的地球磁场形态反推地球电场,地球电场电流的最大处应该在赤道切面的平面上。当代地磁场理论认为,这个电流是在地核赤道上流动的(地核发电机原理),它的动力源于地球层之间的自转差。实际上这是一些很不切实际的想法,地球的较差自转本身就不是一个加速度,它不会有能量产生。赤道环电流形成地磁场,电流在地核上要比在地壳上须要更强大的动力,它是在级数上差别的能量级。所以根本上说地球内部就不会有这麽大的能量产生。

科学的进步使人们知道,对自己周围的环境数量化很是重要。二十世纪人类开始测量各地岩石的剩余磁场,它可以表明岩石形成时地球磁场的许多参数。测量的结果令人震惊,有许多的岩石剩余磁场颠倒了。颠倒的剩磁是当时主要想解释的矛盾,经过很长时间思考,没有更好的解释,只好是说地磁场翻转了。可是岩石剩磁场不仅是颠倒,而且由下倾变为向上翘,这在当时科学界没太多地注意这个问题。

这只是一个空间概念问题的思考,实际上地球磁场从来就没有翻转过。我们可以想象,在你面前横放着一个导电体,流经它的电流就可以在导体周围产生一个磁场,你可以把在你这边的磁场定义为正向磁场,那么在导体的另一边对你这面来说就是一个反向磁场。

你面对的正向磁场某个点上,有它的场强、极向和倾角。在磁场发生翻转时,也就是说导体的电流方向发生改变。这时磁场极向也就改变了,可是磁场的磁倾角是不会改变的。极向和倾角同时改变的情况就只有到导电体的反向磁场相对位置中去找。地球岩石的翻转剩磁可以说都是在地电流层之下形成的,所以它们的磁场极向和磁倾角都发生了改变。

有人会问,地球磁场在几十亿年的进化中到底发生过翻转吗?解决这个问题,这就只能到剩余磁性的资料里去翻看了,要是发现有磁场极向改变而磁倾角不变地层,这说明会有地磁场翻转的情况发生。可是地球磁场从来就没有翻转过。

地球生物都是在地球表面和水中进化的,所以地球生物从来就没有在逆向磁场中生存过。这样地球生物演化的表现也就没有逆向磁场的生物特征留存。

麦克斯韦方程反推地球电场和岩石剩余磁场唯一解释都说明,地球电磁场的电流是在地壳中流动着,但是我们为什么很少能感觉到这个地电流的存在呢?这主要是因为电流在地壳导体场流动时,它有一个最小电阻路径原理。因为地球是圆的,所以地电流不会表现到地球表面上来。

地球的演化、乃至太阳系的演化是一个恒定变化的过程,在其中很少会有突发事件发生。行星的磁场如果发生翻转,那可以说是突发事件引诱的,这种突发事件在太阳里我们无法找到它的诱发点。地球磁场也从来就没有翻转过。

地球磁场 参考资料

    

1、http://www.bjkp.gov.cn/kxbl/schj/k30126-03.htm
2、http://news.xinhuanet.com/st/2004-09/29/content_2037972.htm
3、http://www.kepu.net.cn/gb/basic/magnetism/geomagnet/200306130024.html

© 以上材料来自 互动百科