电脑的图片和资料:

电子计算机 维基百科,自由的百科全书 (重定向自电脑) 跳转到: 导航, 搜索 “计算机”重定向至此。关于计算机的其他意思,详见“计算机 (消歧义)”。 80年代Apple IIe相容电脑Z3 超级电脑-走鹃 wristwatch中的手表型Linux系统电脑。电脑也可以很小,不限于一般所指的PC个人电脑。

▼▲ 为了阅读方便,本文使用全文手工转换。转换内容:

本文采用电脑和信息技术组全文转换 [查看] • • [强制刷新]


字词转换说明显示↓关闭↑

字词转换是中文维基的一项自动转换,目的是通过计算机程序自动消除繁简、地区词等不同用字模式的差异,以达到阅读方便。字词转换包括全局转换和手动转换,本说明所使用的标题转换和全文转换技术,都属于手动转换。

如果您想对我们的字词转换系统提出一些改进建议,或者提交应用面更广的转换(中文维基百科全站乃至MediaWiki软件),或者报告转换系统的错误,请前往Wikipedia:字词转换请求或候选发表您的意见。

电子计算机(英语:Computer),又称计算机或电脑,是一种利用电子学原理根据一系列指令来对数据进行处理的机器。

在现代,机械计算机的应用已经完全被电子计算机所取代,因此电子计算机在中国大陆地区通常也直接简称为计算机。其所相关的技术研究叫计算机科学。而“计算机技术”指的是将计算机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。“计算机技术”与“计算机科学”是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。此外,电子计算机亦被形象地称作电脑。

至于由数据为核心的研究则称为信息技术。通常人们接触最多的是个人电脑(PC)。

计算机种类繁多,但实际来看,计算机总体上是处理信息的工具。根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,只要不考虑时间和存储因素,从个人数码助理(PDA)到超级计算机都应该可以完成同样的作业。即是说,即使是设计完全相同的计算机,只要经过相应改装,就应该可以被用于从公司薪金管理到无人驾驶飞船操控在内的各种任务。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。

计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机,在中国地区简称为“微机”。我们今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备—无论是飞机,工业机器人还是数码相机。[1]

上述对于电子计算机的定义包括了许多能计算或是只有有限功能的特定用途的设备,然而当说到现代的电子计算机,其最重要的特征是:只要给予正确的指示,任何一部电子计算机都可以模拟其他任何计算机的行为(只受限于其本身的存储容量和执行速度)。据此,现代电子计算机相对于早期的电子计算机也被称为通用型电子计算机。

//

历史

主条目:计算机历史
ENIAC 是电脑发展史上的一个里程碑

本来,计算机的英文原词“computer”是指从事数据计算的人。而他们往往都需要借助某些机械计算设备或模拟计算机。这些早期计算设备的祖先包括有算盘,以及可以追溯到公元前87年的被古希腊人用于计算行星移动的安提基特拉机器。随着中世纪末期欧洲数学与工程学的再次繁荣,1623年德国博学家Wilhelm Schickard率先研制出了欧洲第一部计算设备,这是一个能进行六位以内数加减法,并能通过铃声输出答案的“计算钟”。使用转动齿轮来进行操作。

1642年法国数学家布莱士·帕斯卡在英国数学家William Oughtred所制作的“计算尺”的基础上,将其加以改进,使能进行八位计算。还卖出了许多制品,成为当时一种时髦的商品。

1801年,法国人Joseph Marie Jacquard对织布机的设计进行改进,使用一系列打孔的纸卡片来作为编织复杂图案的程序。尽管这种被称作“Jacquard式织布机”的机器并不被认为是一部真正的计算机,但是其可编程性质使之被视为现代计算机发展过程中重要的一步。

查尔斯·巴比奇(Charles Babbage)于1820年构想和设计了第一部完全可编程计算机。但由于技术条件、经费限制,以及无法忍耐对设计不停的修补,这部计算机在他有生之年始终未能问世。约到19世纪晚期,许多后来被证明对计算机科学有着重大意义的技术相继出现,包括打孔卡片以及真空管。德裔美籍统计学家赫尔曼·何乐礼(Hermann Hollerith)设计了一部制表用的机器,其中便应用打孔卡片来进行大规模自动数据处理。

在20世纪前半叶,为了迎合科学计算的需要,许多专门用途的、复杂度不断增长的模拟计算机被研制出来。这些计算机都是用它们所针对的特定问题的机械或电子模型作为计算基础。20世纪三四十年代,计算机的性能逐渐强大并且通用性得到提升,现代计算机的关键特色被不断地加入进来。

1937年,年仅21岁的麻省理工学院研究生克劳德·香农(Claude Shannon)发表了他的伟大论文《对继电器和开关电路中的符号分析》,文中首次提及数字电子技术的应用。他向人们展示了如何使用开关来实现逻辑和数学运算。此后,他通过研究万尼瓦尔·布什的微分模拟器进一步巩固了他的想法。这是一个标志着二进制电子电路设计和逻辑门应用开始的重要时刻,而作为这些关键思想诞生的先驱,应当包括:Almon Strowger,他为一个含有逻辑门电路的设备申请了专利;尼古拉·特斯拉(Nikola Tesla),他早在1898年就曾申请含有逻辑门的电路设备;Lee De Forest,于1907年他用真空管代替了继电器。

Commodore公司在1980年代生产的Amiga 500电脑 HP Jornada 690 打开了手机和电脑结合的早期概念

沿着这样一条上下求索的漫漫长途去定义所谓的“第一部电子计算机”可谓相当困难。1941年5月12日,德国工程师Konrad Zuse完成了他的图灵完全机电一体计算机“Z3”,这是第一部具有自动二进制数学计算特色以及可行的编程功能的计算机,但还不是“电子”计算机。此外,其他值得注意的成就主要有:1941年夏天诞生的阿塔纳索夫-贝瑞计算机是世界上第一部电子计算机,它使用了真空管计算器,二进制数值,可复用内存;在英国于1943年被展示的神秘的巨像计算机(Colossus computer),尽管编程能力极其有限,但是它使人们确信使用真空管既值得信赖,又能实现电气化的再编程;哈佛大学的马克一号;以及基于二进制的“ENIAC”,全名为“电子数值积分计算器”,这是第一部通用意图的计算机,但由于其结构设计不够弹性化,导致对它的每一次再编程都要重新连接电气线路。

1940年代的第二次世界大战中,为训练轰炸机飞行员,美国海军曾向麻省理工学院探询,是否能够开发出一款可以控制飞行模拟器的计算机。军方当初的设想只是希望通过该计算机将飞行员模拟操作产生的数据实时反映到仪表盘上。与之前的模拟设备不同,军方要求该计算机应基于空气动力学设计,与实物无限接近,以便进行各种航空训练。于是麻省理工创造了旋风工程,其制造出了世界上第一台能够实时处理数据的“旋风电脑”,并发明了磁芯存储器。这为个人电脑的发展做出了历史性的贡献。

开发埃尼阿克的小组针对其缺陷又进一步完善了设计,并最终呈现出今天我们所熟知的冯·诺伊曼结构(程序存储体系结构)。这个体系是当今所有计算机的基础。20世纪40年代中晚期,大批基于此一体系的计算机开始被研制,其中以英国最早。尽管第一部研制完成并投入运转的是“小规模实验机”(Small-Scale Experimental Machine,SSEM),但真正被开发出来的实用机很可能是EDSAC。

在整个20世纪50年代,真空管计算机居于统治地位。1958年9月12日在后来英特尔的创始人、Robert Noyce的领导下,发明了集成电路。不久又推出了微处理器。1959年到1964年间设计的计算机一般被称为第二代计算机。

到了60年代,晶体管计算机将其取而代之。晶体管体积更小,速度更快,价格更加低廉,性能更加可靠,这使得它们可以被商品化生产。1964年到1972年的计算机一般被称为第三代计算机。大量使用集成电路,典型的机型是IBM360系列。

到了70年代,集成电路技术的引入极大地降低了计算机生产成本,计算机也从此开始走向千家万户。1972年以后的计算机习惯上被称为第四代计算机。基于大规模集成电路,及后来的超大规模集成电路。1972年4月1日 INTEL推出8008微处理器。1976年,史蒂夫·乔布斯(Stephen Jobs)和斯蒂夫·沃兹尼亚克(Stephen Wozinak)创办苹果计算机公司。并推出其 Apple I 计算机。1977年5月Apple II 型计算机发布。1979年6月1日 INTEL 发布了8位的8088微处理器。

1982年, 微电脑开始普及,大量进入学校和家庭。1982年1月Commodore 64计算机发布,价格595美元。1982年2月80286发布。时钟频率提高到20MHz,并增加了保护模式,可访问16M内存。支持1GB以上的虚拟内存。每秒运行270万条指令,集成了134000个晶体管。

1990年11月,微软发布第一代MPC(Multimedia PC,多媒体个人电脑标准):处理器至少为80286/12MHz(后来增加到80386SX/16MHz),有光驱,传输率不少于150 KB/sec。1994年10月10日Intel发布75MHzPentium处理器。1995年11月1日,Pentium Pro发布。主频可达200MHz,每秒钟完成4.4亿条指令,集成了550万个晶体管。1997年1月8日Intel发布Pentium MMX,对游戏和多媒体功能进行了增强。

此后计算机的变化日新月异,1965年发表的摩尔定律不断被应证,预测在未来10—15年仍依然适用。[CEG]

原理

个人电脑的主要结构:
1.显示器
2.主板
3.CPU (微处理器)
4.主要存储器(英语:Primary storage) (存储器)
5.适配器(声卡、网卡、电视卡等)
6.电源供应器
7.软驱 / 光盘驱动器
8.次要存储器(英语:Primary storage) (硬盘)
9.键盘
10.鼠标

尽管计算机技术自20世纪40年代第一部电子通用计算机诞生以来以来有了令人目眩的飞速发展,但是今天计算机仍然基本上采用的是存储程序结构,即冯·诺伊曼结构。这个结构实现了实用化的通用计算机。

存储程序结构间将一部计算机描述成四个主要部分:算术逻辑单元(ALU),控制电路,存储器,以及输入输出设备(I/O)。这些部件通过一组一组的排线连接(特别地,当一组线被用于多种不同意图的数据传输时又被称为总线),并且由一个时钟来驱动(当然某些其他事件也可能驱动控制电路)。

概念上讲,一部计算机的存储器可以被视为一组“细胞”单元。每一个“细胞”都有一个编号,称为地址;又都可以存储一个较小的定长信息。这个信息既可以是指令(告诉计算机去做什么),也可以是数据(指令的处理对象)。原则上,每一个“细胞”都是可以存储二者之任一的。

算术逻辑单元(ALU)可以被称作计算机的大脑。它可以做两类运算:第一类是算术运算,比如对两个数字进行加减法。算术运算部件的功能在ALU中是十分有限的,事实上,一些ALU根本不支持电路级的乘法和除法运算(由是用户只能通过编程进行乘除法运算)。第二类是比较运算,即给定两个数,ALU对其进行比较以确定哪个更大一些。[2]

输入输出系统是计算机从外部世界接收信息和向外部世界反馈运算结果的手段。对于一部标准的个人电脑,输入设备主要有键盘和鼠标,输出设备则是显示器、打印机以及其他许多后文将要讨论的可连接到计算机上的I/O设备。

控制系统将以上计算机各部分联系起来。它的功能是从存储器和输入输出设备中读取指令和数据,对指令进行解码,并向ALU交付符合指令要求的正确输入,告知ALU对这些数据做哪些运算并将结果数据返回到何处。控制系统中一个重要组件就是一个用来保持跟踪当前指令所在地址的计数器。通常这个计数器随着指令的执行而累加,但有时如果指令指示进行跳转则不依此规则。

20世纪80年代以来ALU和控制单元(二者合称中央处理器,即CPU)逐渐被集成到一块集成电路上,称作微处理器。这类计算机的工作模式十分直观:在一个时钟周期内,计算机先从存储器中获取指令和数据,然后执行指令,存储数据,再获取下一条指令。这个过程被反复执行,直至得到一个终止指令。

由控制器解释,运算器执行的指令集是一个精心定义的数目十分有限的简单指令集合。一般可以分为四类:1)、数据移动(如:将一个数值从存储单元A拷贝到存储单元B)2)、数逻运算(如:计算存储单元A与存储单元B之和,结果返回存储单元C)3)、条件验证(如:如果存储单元A内数值为100,则下一条指令地址为存储单元F)4)、指令串行改易(如:下一条指令地址为存储单元F)

指令如同数据一样在计算机内部是以二进制来表示的。比如说,10110000就是一条Intel x86系列微处理器的拷贝指令代码。某一个计算机所支持的指令集就是该计算机的机器语言。因此,使用流行的机器语言将会使既成软件在一部新计算机上运行得更加容易。所以对于那些机型商业化软件开发的人来说,它们通常只会关注一种或几种不同的机器语言。

更加强大的小型计算机,大型计算机和服务器可能会与上述计算机有所不同。它们通常将任务分担给不同的CPU来执行。今天,微处理器和多核个人电脑也在朝这个方向发展。[3]

超级计算机通常有着与基本的存储程序计算机显著区别的体系结构。它们通常有着数以千计的CPU,不过这些设计似乎只对特定任务有用。在各种计算机中,还有一些单片机采用令程序和数据分离的哈佛架构(Harvard architecture)。

计算机的数字电路实现

以上所说的这些概念性设计的物理实现是多种多样的。如同我们前述所及,一部存储过程式计算机既可以是巴比奇的机械式的,也可以是基于数字电子的。但是,数字电路可以通过诸如继电器之类的电子控制开关来实现使用2进制数的算术和逻辑运算。香农的论文正是向我们展示了如何排列继电器来组成能够实现简单布尔运算的逻辑门。其他一些学者很快指出使用真空管可以代替继电器电路。真空管最初被用作无线电电路中的放大器,之后便开始被越来越多地用作数字电子电路中的快速开关。当电子管的一个针脚被通电后,电流就可以在另外两端间自由通过。

通过逻辑门的排列组合我们可以设计完成很多复杂的任务。举例而言,加法器就是其中之一。该器件在电子领域实现了两个数相加并将结果保存下来—在计算机科学中这样一个通过一组运算来实现某个特定意图的方法被称做一个算法。最终,人们通过数量可观的逻辑门电路组装成功了完整的ALU和控制器。说它数量可观,只需看一下CSIRAC这部可能是最小的实用化电子管计算机。该机含有2000个电子管,其中还有不少是双用器件,也即是说总计合有2000到4000个逻辑器件。

真空管对于制造规模庞大的门电路明显力不从心。昂贵,不稳(尤其是数量多时),臃肿,能耗高,并且速度也不够快—尽管远超机械开关电路。这一切导致20世纪60年代它们被晶体管取代。后者体积更小,易于操作,可靠性高,更省能耗,同时成本也更低。

集成电路是现今电子计算机基础

20世纪60年代后,晶体管开始逐渐为将大量晶体管、其他各种电器组件和连接导线安置在一片硅板上的集成电路所取代。70年代,ALU和控制器作为组成CPU的两大部分,开始被集成到一块芯片上,并称为“微处理器”。沿着集成电路的发展史,可以看到一片芯片上所集成器件的数量有了飞速增长。第一块集成电路只不过包含几十个部件,而到了2006年,一块Intel Core Duo处理器上的晶体管数目高达一亿五千一百万之巨。

无论是电子管,晶体管还是集成电路,它们都可以通过使用一种触发器设计机制来用作存储程序体系结构中的“存储”部件。而事实上触发器的确被用作小规模的超高速存储。但是,几乎没有任何计算机设计使用触发器来进行大规模数据存储。最早的计算机是使用Williams电子管向一个电视屏或若干条水银延迟线(声波通过这种线时的走行速度极为缓慢足够被认为是“存储”在了上面)发射电子束然后再来读取的方式来存储数据的。当然,这些尽管有效却不怎么优雅的方法最终还是被磁性存储取而代之。比如说磁芯存储器,代表信息的电流可在其中的铁质材料内制造恒久的弱磁场,当这个磁场再被读出时就实现了数据恢复。动态随机存储器(DRAM)亦被发明出来。它是一个包含大量电容的集成电路,而这些电容器件正是负责存储数据电荷—电荷的强度则被定义为数据的值。

输入输出设备

6支接脚的小型PS/2输入接口 Canon S520打印机 Mac OS Xv10.3操作系统"Panther"屏幕截图

输入输出设备(I/O)是对将外部世界信息发送给计算机的设备和将处理结果返回给外部世界的设备的总称。这些返回结果可能是作为用户能够视觉上体验的,或是作为该计算机所控制的其他设备的输入:对于一部机器人,控制计算机的输出基本上就是这部机器人本身,如做出各种行为。

第一代计算机的输入输出设备种类非常有限。通常的输入用设备是打孔卡片的读卡机,用来将指令和数据导入内存;而用于存储结果的输出设备则一般是磁带。随着科技的进步,输入输出设备的丰富性得到提高。以个人计算机为例:键盘和鼠标是用户向计算机直接输入信息的主要工具,而显示器、打印机、扩音器、耳机则返回处理结果。此外还有许多输入设备可以接受其他不同种类的信息,如数码相机可以输入图像。在输入输出设备中,有两类很值得注意:第一类是二级存储设备,如硬盘,光盘或其他速度缓慢但拥有很高容量的设备。第二个是计算机网络访问设备,通过他们而实现的计算机间直接数据传送极大地提升了计算机的价值。今天,国际互联网成就了数以千万计的计算机彼此间传送各种类型的数据。

程序

简单说,计算机程序就是计算机执行指令的一个串行。它既可以只是几条执行某个简单任务的指令,也可能是可能要操作巨大数据量的复杂指令队列。许多计算机程序包含有百万计的指令,而其中很多指令可能被反复执行。在2005年,一部典型的个人电脑可以每秒执行大约30亿条指令。计算机通常并不会执行一些很复杂的指令来获得额外的机能,更多地它们是在按照程序员的排列来运行那些较简单但为数众多的短指令。

一般情况下,程序员们是不会直接用机器语言来为计算机写入指令的。那么做的结果只能是费时费力、效率低下而且漏洞百出。所以,程序员一般通过“高级”一些的语言来写程序,然后再由某些特别的计算机程序,如解释器或编译器将之翻译成机器语言。一些编程语言看起来很接近机器语言,如汇编程序,被认为是低级语言。而另一些语言,如即如抽象原则的Prolog,则完全无视计算机实际运行的操作细节,可谓是高级语言。对于一项特定任务,应该根据其事务特点,程序员技能,可用工具和客户需求来选择相应的语言,其中又以客户需求最为重要(美国和中国军队的工程项目通常被要求使用Ada语言)。

计算机软件是与计算机程序并不相等的另一个词汇。计算机软件一个较为包容性较强的技术术语,它包含了用于完成任务的各种程序以及所有相关材料。举例说,一个视频游戏不但只包含程序本身,也包括图片、声音以及其他创造虚拟游戏环境的数据内容。在零售市场,在一部计算机上的某个应用程序只是一个面向大量用户的软件的一个副本。这里老生常谈的例子当然还是微软的office软件组,它包括一系列互相关联的、面向一般办公需求的程序。

利用那些极其简单的机器语言指令来实现无数功能强大的应用软件意味着其编程规模注定不小。Windows XP这个操作系统程序包含的C++高级语言源代码达到了4000万行。当然这还不是最大的。如此庞大的软件规模也显示了管理在开发过程中的重要性。实际编程时,程序会被细分到每一个程序员都可以在一个可接受的时长内完成的规模。

即便如此,软件开发的过程仍然进程缓慢,不可预见且遗漏多多。应运而生的软件工程学就重点面向如何加快作业进度和提高效率与质量。

函数库与操作系统

在计算机诞生后不久,人们发现某些特定作业在许多不同的程序中都要被实施,比如说计算某些标准数学函数。出于效率考量,这些程序的标准版本就被收集到一个“库”中以供各程序调用。许多任务经常要去额外处理种类繁多的输入输出接口,这时,用于连接的库就能派上用场。

20世纪60年代,随着计算机工业化普及,计算机越来越多地被用作一个组织内不同作业的处理。很快,能够自动安排作业时续和执行的特殊软件出现了。这些既控制硬件又负责作业时序安排的软件被称为“操作系统”。一个早期操作系统的例子是IBM的OS/360。

在不断地完善中,操作系统又引入了时间共享机制——并发。这使得多个不同用户可以“同时”地使用机器执行他们自己的程序,看起来就像是每个人都有一部自己的计算机。为此,操作系统需要像每个用户提供一部“虚拟机”来分离各个不同的程序。由于需要操作系统控制的设备也在不断增加,其中之一便是硬盘。因之,操作系统又引入了文件管理和目录管理(文件夹),大大简化了这类永久储存性设备的应用。此外,操作系统也负责安全控制,确保用户只能访问那些已获得允许的文件。

当然,到目前为止操作系统发展历程中最后一个重要步骤就是为程序提供标准图形用户界面(GUI)。尽管没有什么技术原因表明操作系统必须得提供这些界面,但操作系统供应商们总是希望并鼓励那些运行在其系统上的软件能够在外观和行为特征上与操作系统保持一致或相似。

除了以上这些核心功能,操作系统还封装了一系列其他常用工具。其中一些虽然对计算机管理并无重大意义,但是于用户而言很是有用。比如,苹果公司的Mac OS X就包含视频剪辑应用程序。

一些用于更小规模的计算机的操作系统可能没用如此众多的功能。早期的微型计算机由于记忆体和处理能力有限而不会提供额外功能,而嵌入式计算机则使用特定化了的操作系统或者干脆没有,它们往往通过应用程序直接代理操作系统的某些功能。

应用

IBM z9 银行用金融服务器,现代金融业早已大量依赖电脑和网上来运作 美国战术数字信息链路TADIL终端机

起初,体积庞大而价格昂贵的数字计算机主要是用做执行科学计算,特别是军用课题。如ENIAC最早就是被用作火炮弹计算和设计氢弹时计算断面中子密度的(如今许多超级计算机仍然在模拟核试验方面发挥着巨大作用)。澳大利亚设计的首部存储程序计算机CSIR Mk I型负责对水电工程中的集水地带的降雨情形进行评估。还有一些被用于解密,比如英国的“巨像”可编程计算机。除去这些早年的科学或军工应用,计算机在其他领域的推广亦十分迅速。

从一开始,存储程序计算机就与商业问题的解决息息相关。早在IBM的第一部商用计算机诞生之前,英国J. Lyons等就设计制造了LEO以进行资产管理或迎合其他商业用途。由于持续的体积与成本控制,计算机开始向更小型的组织内普及。加之20世纪70年代微处理器的发明,廉价计算机成为了现实。80年代,个人计算机全面流行,电子文档写作与印刷,计算预算和其他重复性的报表作业越来越多地开始依赖计算机。

随着计算机便宜起来,创作性的艺术工作也开始使用它们。人们利用合成器,计算机图形和动画来创作和修改声音,图像,视频。视频游戏的产业化也说明了计算机在娱乐方面也开创了新的历史。

计算机小型化以来,机械设备的控制也开始仰仗计算机的支持。其实,正是当年为了建造足够小的嵌入式计算机来控制阿波罗1号才刺激了集成电路技术的跃进。今天想要找一部不被计算机控制的有源机械设备要比找一部哪怕是部分计算机控制的设备要难得多。可能最著名的计算机控制设备要非机器人莫属,这些机器有着或多或少人类的外表和并具备人类行为的某一子集。在批量生产中,工业机器人已是寻常之物。不过,完全的拟人机器人还只是停留在科幻小说或实验室之中。

机器人技术实质上是人工智能领域中的物理表达环节。所谓人工智能是一个定义模糊的概念但是可以肯定的是这门学科试图令计算机拥有目前它们还没有但作为人类却固有的能力。数年以来,不断有许多新方法被开发出来以允许计算机做那些之前被认为只有人才能做的事情。比如读书、下棋。然而,到目前为止,在研制具有人类的一般“整体性”智能的计算机方面,进展仍十分缓慢。

网络、国际互联网

20世纪50年代以来计算机开始用作协调来自不同地方之信息的工具,美国军方的贤者系统(SAGE)就是这方面第一个大规模系统。之后“军刀”等一系列特殊用途的商业系统也不断涌现出来。

70年代后,美国各大院校的计算机工程师开始使用电信技术把他们的计算机连接起来。由于这方面的工作得到了ARPA的赞助,其计算机网络也就被称为ARPANET。此后,用于ARPA网的技术快速扩散和进化,这个网络也冲破大学和军队的范围最终形成了今天的国际互联网(Internet)。网络的出现导致了对计算机属性和边界的再定义。太阳微系统公司的John Gage 和 Bill Joy就指出:“网络即是计算机”。计算机操作系统和应用程序纷纷向能访问诸如网内其它计算机等网络资源的方向发展。最初这些网络设备仅限于为高端科学工作者所使用,但90年代后随着电子邮件和万维网(World Wide Web)技术的扩散,以及以太网和ADSL等网络连接技术的廉价化,互联网络已变得无所不在。今日入网的计算机总数,何以千万计;无线互联技术的普及,使得互联网在移动计算环境中亦如影随形。比如在笔记本计算机上广泛使用的Wi-Fi技术就是无线上网的代表性应用。

下一代计算机

自问世以来数字计算机在速度和能力上有了可观的提升,迄今仍有不少课题显得超出了当前计算机的能力所及。对于其中一部分课题,传统计算机是无论如何也不可能实现的,因为找到一个解决方法的时间还赶不上问题规模的扩展速度。因此,科学家开始将目光转向生物计算技术和量子理论来解决这一类问题。比如,人们计划用生物性的处理来解决特定问题(DNA计算)。由于细胞分裂的指数级增长方式,DNA计算系统很有可能具备解决同等规模问题的能力。当然,这样一个系统直接受限于可控制的DNA总量。

量子计算机,顾名思义,利用了量子物理世界的超常特性。一旦能够造出量子计算机,那么它在速度上的提升将令一般计算机难以望其项背。当然,这种涉及密码学和量子物理模拟的下一代计算机还只是停留在构想阶段。[4]

计算机学科

在当今世界,几乎所有专业都与计算机息息相关。但是,只有某些特定职业和学科才会深入研究计算机本身的制造、编程和使用技术。用来诠释计算机学科内不同研究领域的各个学术名词的涵义不断发生变化,同时新学科也层出不穷。

  • 计算机工程学 是电子工程的一个分支,主要研究计算机软硬件和二者间的彼此联系。
  • 计算机科学 是对计算机进行学术研究的传统称谓。主要研究计算技术和执行特定任务的高效算法。该门学科为我们解决确定一个问题在计算机领域内是否可解,如可解其效率如何,以及如何作成更加高效率的程序。时至今日,在计算机科学内已经派生了许多分支,每一个分支都针对不同类别的问题进行深入研究。
  • 软件工程学 着重于研究开发高质量软件系统的方法学和实践方式,并试图压缩并预测开发成本及开发周期。
  • 信息系统 研究计算机在一个广泛的有组织环境(商业为主)中的计算机应用。

许多学科都与其他学科相互交织。如地理信息系统专家就是利用计算机技术来管理地理信息。

全球有三个较大规模的致力于计算机科学的组织:英国电脑学会 (BCS);美国计算机协会(ACM);美国电气电子工程师协会(IEEE)。

参见

信息技术主题首页
  • 个人电脑
  • 超级电脑
  • 计算机硬件历史
  • 信息设备
  • 软件
  • 人机界面
  • 操作系统
  • 微软
  • 苹果电脑
  • Intel
  • AMD
  • IBM
  • NVIDIA
  • ATI
  • 那斯达克
  • 互联网
  • 英国电脑学会

参考文献

  • ^ Meuer, Hans; Strohmaier, Erich; Simon, Horst; Dongarra, Jack (2006-11-13). Architectures Share Over Time. TOP500. Retrieved on 2006-11-27.
  • ^ Digital Equipment Corporation (1972). PDP-11/40 Processor Handbook (PDF), Maynard, MA: Digital Equipment Corporation.
  • ^ Digital Equipment Corporation (1972). PDP-11/40 Processor Handbook (PDF), Maynard, MA: Digital Equipment Corporation.
  • ^ Stokes, Jon (2007). Inside the Machine: An Illustrated Introduction to Microprocessors and Computer Architecture. San Francisco: No Starch Press. ISBN 978-1-59327-104-6.
  • 摘要

    电脑(英语:electronic computer)是一种利用电子学原理根据一系列指令来对数据进行处理的机器。在现代,机械计算机的应用已经完全被电子计算机所取代,因此电子计算机通常也直接简称为电脑。其所相关的技术研究叫计算机科学,由数据为核心的研究称信息技术。

    电脑 基本资料

        

    英文名称:electronic computer
    正式名称:电子计算机
    简名:电脑
    拼音:dian zi Ji suan ji
    英文简写:computer(电脑)、PC(个人计算机)

    电脑 基本简介

         电脑

    我们不妨把‘大’换成‘电’,就知道把大脑转化成电脑, 由于思维转化,智人把大脑与科技发展联系 起来,后来就有了电脑,电脑先是打字机的进化,所以要有键盘,可是要有中间的处理,所以CPU出现了,电 脑的CPU就像人的大脑的最高命令执行者,而内存是大脑存储器,之后人们又想到必须有电源,要把信息显示 出来,就要有显示屏,而连接显示屏和CPU也要个工具,所以接着就出现了显卡,但是CPU和内存等要有地方放,所以又有了主板,因为电脑之中要有直接存放的地方,所以要有物理内存,之后主板上又有了硬盘,因 为电脑有些信息要有声音,所以又有了声卡。随着电脑的越来越多,必须把信息连接起来,所以有了网卡。 因为CPU,主板等等东西太多,所以就要个装箱,所以机箱就出现了。随着科技发展,单纯的数字已经不能包 容信息时代,图片,视频等等都出现了。为了操作更加方便,所以鼠标就来了! 就这样,再加一些连接线。 基本的电脑就产生了! 因为有了CPU,电脑就成为了一个高级机械机器!

    电脑 组成部分

         电脑

    一、“软件部分”包括:操作系统、应用软件等。应用软件中电脑行业的管理软件,IT电脑行业的发展必 备利器,电脑行业的erp软件 。
      
    二、“硬件部分”包括:机箱(电源、硬盘、磁盘、内存、主 板、cpu、光驱、声卡、网卡、显卡)显示器、键盘、鼠标。(另可配有音箱等。)

    586甚至奔腾二代以前的电脑硬件几乎全部装配了一个叫做“软驱”的磁盘驱动器。8086之前的电脑一般 会配置有两个软盘驱动器,也就是被称做“A驱”和“B驱”的磁盘驱动器,一般A驱是3.5英寸,B驱5英寸。这是也为什么现在的电脑磁盘驱动器的符号总是从“C”开始而没有A和B驱的原因。

    电子计算机是一种根据一系列指令来对数据进行处理的机器。所相关的技术研究叫计算机科学,由数据为 核心的研究称信息技术。

    计算机种类繁多。实际来看,计算机总体上是处理信息的工具。根据图灵机理论,一部具有最基本功能的计算机应当能够完成任何其它计算机能做的事情。因此,只要不考虑时间和存储因素,从个人数码助理(PDA )到超级计算机都应该可以完成同样的作业。即是说,即使是设计完全相同的计算机,只要经过相应改装, 就应该可以被用于从公司薪金管理到无人驾驶飞船操控在内的各种任务。由于科技的飞速进步,下一代计算 机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。

    计算机在组成上形式不一。早期计算机的体积足有一间房屋大小,而今天某些嵌入式计算机可能比一副扑 克牌还小。当然,即使在今天,依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务 处理需求服务。比较小的,为个人应用而设计的计算机称为微型计算机,简称微机。我们今天在日常使用“ 计算机”一词时通常也是指此。不过,现在计算机最为普遍的应用形式却是嵌入式的。嵌入式计算机通常相对简单,体积小,并被用来控制其它设备—无论是飞机,工业机器人还是数码相机。

    上述对于电子计算机的定义包括了许多能计算或是只有有限功能的特定用途的设备。然而当说到现代的电子计算机,其最重要的特征是,只要给予正确的指示,任何一台电子计算机都可以模拟其他任何计算机的行 为(只受限于电子计算机本身的存储容量和执行的速度)。据此,现代电子计算机相对于早期的电子计算机 也被称为通用型电子计算机。

    电脑 发展过程

         电脑

    计算机进化过程
    1642至1643年,巴斯卡(Blaise Pascal)为了帮助做收税员的父亲,他就发明了一个用齿轮运作的加法器,叫 “Pascalene” ,这是第一部机械加法器。
    1666年,在英国Samuel Morland发明了一部可以计算加数及减数的机械计数机。
    1671年,著名的德国数学家莱布尼兹(G.W.Leibnitz)制成了第一台能够进行加、减、乘、除四则运算的机械式计算机。
    1673年, Gottfried Leibniz 制造了一部踏式(stepped)圆柱形转轮的计数机,叫“Stepped Reckoner”,这部计算器可以把重复的数字相乘,并自动地加入加数器里。
    1694年,德国数学家,Gottfried Leibniz ,把巴斯卡的Pascalene 改良,制造了一部可以计算乘数的机器,它仍然是用齿轮及刻度盘操作。
    1773年, Philipp-Matthaus 制造及卖出了少量精确至12位的计算机器。
    1775年,The third Earl of Stanhope 发明了一部与Leibniz相似的乘法计算器。
    1786年,J.H.Mueller 设计了一部差分机,可惜没有拨款去制造。
    1801年, Joseph-Marie Jacquard 的织布机是用连接按序的打孔卡控制编织的样式。
    1854年,George Boole 出版 "An Investigation of the Laws of Thought”,是讲述符号及逻辑理由,它后来成为计算机设计的基本概念。
    1858年,一条电报线第一次跨越大西洋,并且提供了几日的服务。
    1861年,一条跨越大陆的电报线把大西洋和太平洋沿岸连接起来。
    1876年,Alexander Graham Bell 发明了电话并取得专利权。
    1876至1878年,Baron Kelvin 制造了一部泛音分析机及潮汐预测机。
    1882年,William S. Burroughs 辞去在银行文员的工作,并专注于加数器的发明。
    1889年,Herman Hollerith 的电动制表机在比赛中有出色的表现,并被用于 1890 中的人口调查。Herman Hollerith 采用了Jacquard 织布机的概念用来计算,他用咭贮存资料,然后注入机器内编译结果。这机器使本来需要十年时间才能得到的人口调查结果,在短短六星期内做到。
    1893年,第一部四功能计算器被发明。

    老式计算机老式计算机

    老式计算机

     1895年,Guglielmo Marconi 传送广播讯号。
    1896年,Hollerith 成立制表机器公司(Tabulating Machine Company)。
    1908年,英国科学家 Campbell Swinton 述了电子扫描方法及预示用阴极射线管制造电视。
    1911年,Hollerith 的表机公司与其它两间公司合并,组成 Computer Tabulating Recording Company (C-T-R),制表及录制公司。但在1924年,改名为International Business Machine Corporation (IBM)。
    1911年,荷兰物理学家 Kamerlingh Onnes 在 Leiden Unversity 发现超导电。
    1931年,Vannever Bush 发明了一部可以解决差分程序的计数机,这机器可以解决一些令数学家,科学家头痛的复杂差分程序。
    1935年,IBM (International Business Machine tion) 引入 "IBM 601”,它是一部有算术部件及可在1秒钟内计算乘数的穿孔咭机器。 它对科学及商业的计算起很大的作用。总共制造了1500 部。
    1937年,Alan Turing 想出了一个 "通用机器” 的概念,可以执行任何的算法,形成了一个"可计算(computability)”的基本概念。Turing 的概念比其它同类型的发明为好,因为他用了符号处理(symbol 概念。
    1939年11月,John Vincent Atannsoff 与 John Berry 制造了一部16位加数器。它是第一部用真空管计算的机器。1939年,Zuse 与 Schreyer 开鈶制造了"V2”[后来叫Z2],这机器沿用 Z1的机械贮存器,加上一个用断电器逻辑(Relay Logic)的新算术部件。但当 Zuse完成草稿后,这计划被中断一年。

    第一台正式的电脑“埃尼阿克”在美国诞生第一台正式的电脑“埃尼阿克”在美国诞生

    科学计算器

    1946年 ,第一台正式的电脑“埃尼阿克”在美国诞生,但十分耗电。
    1959年,第一台小型科学计算器IBM620研制成功。
    1960年,数据处理系统IBM1401研制成功。
    1961年,程序设计语言COBOL问世。
    1961年,第一台分系统计算机由麻省理工学院设计完成。
    1963年,BASIC语言问世。
    1964年,第三代计算机IBM360系列制成。
    1965年,美国数字设备公司推出第一台小型机PDP-8。
    1969年,IBM公司研制成功90列卡片机和系统——3计算机系统。
    1970年,IBM系统1370计算机系列制成。
    1971年,伊利诺大学设计完成伊利阿克IV巨型计算机。
    1971年,第一台微处理机4004由英特尔公司研制成功。
    1972年,微处理机基片开始大量生产销售。
    1973年,第一片软磁盘由IBM公司研制成功。
    1975年,ATARI——8800微电脑问世。
    1977年,柯莫道尔公司宣称全组合微电脑PET——2001研制成功。
    1977年,TRS——80微电脑诞生。
    1977年,苹果——II型微电脑诞生。
    1978年,超大规模集成电路开始应用。
    1978年,磁泡存储器第二次用于商用计算机。
    1979年,夏普公司宣布制成第一台手提式微电脑。
    1982年,微电脑开始普及,大量进入学校和家庭。
    1984年,日本计算机产业着手研制"第五代计算机"——-具有人工智能的计算机。1984: DNS (Domain Name Server) 域名服务器发布,互连网上有1000多台主机运行。
    1984年: Hewlett-Packard发布了优异的激光打印机,HP也在喷墨打印机上保持领先技术。
    1984年1月: Apple 的Macintosh发布。基于Motorola 68000微处理器。可以寻址16M。
    1984年8月: MS-DOS 3.0、PC-DOS 3.0、IBM AT发布,采用ISA标准,支持大硬盘和1.2M高密软驱。
    1984年9月: Apple发布了有512Kb 内存的Macintosh,但其他方面没有什么提高。
    1984年底: Compaq开始开发IDE接口,可以以更快的速度传输数据,并被许多同行采纳,后来更进一步的EIDE推出,可以支持到528MB的驱动器。数据传输也更快。
    1985年: Philips和Sony合作推出CD-ROM驱动器。
    1985年: EGA标准推出。
    1985年3月: MS-DOS 3.1、PC-DOS 3.1。这是第一个提供部分网络功能支持DOS版本。
    1985年10月17日: 80386 DX推出。时钟频率到达33MHz,可寻址1GB内存。比286更多的指令。每秒6百万条指令,集成275000个晶体管。
    1985年11月: Microsoft Windows发布。但在其3.0版本之全面没有得到广泛的应用。需要DOS的支持,类似苹果机的操作界面,以致被苹果控告。诉讼到1997年8月才终止。
    1985年12月: MS-DOS 3.2、PC-DOS 3.2。这是第一个支持3.5英寸磁盘的系统。但也只是支持到720KB。到3.3版本时方可支持1.44兆。
    1986年1月: Apple 发布较高性能的Macintosh。有四兆内存,和SCSI适配器。
    1986年9月: Amstrad Announced发布便宜且功能强大的计算机Amstrad PC 1512。具有CGA图形适配器、512KB内存、8086处理器20兆硬盘驱动器。采用了鼠标器和图形用户界面,面向家庭设计。

    鼠标鼠标

    鼠标

    1987: Connection Machine超级计算机发布。采用并行处理,每秒钟2亿次运算。
    1987: Microsoft Windows 2.0发布,比第一版要成功,但并没有多大提高。.
    1987: 英国数学家Michael F. Barnsley找到图形压缩的方法。
    1987: Macintosh II发布,基于Motorola 68020处理器。时钟16MHz,每秒260万条指令。有一个SCSI适配器和一个彩色适配器。
    1987年4月2日: IBM推出PS/2系统。最初基于8086处理器和老的XT总线。后来过渡到80386,开始使用3.5英寸1.44MB软盘驱动器。引进了微通道技术,这一系列机型取得了巨大成功。出货量达到200万台。
    1987: IBM发布VGA技术
    1987:
    IBM 理器8514/A。
    1987年4月:
    MS-DOS,支持1.44MB驱动器和硬盘分区。可为硬盘分出多个逻辑驱动器。
    1987年4月:
    Microsoft和IBM发布S/2Warp操作系统。但并未取得多大成功。
    1987年8月: AD-LIB声卡发布。一个加拿大公司的产品。
    1987年10月: Compaq DOS (CPQ-DOS) v3.31发布。支持的硬盘分区大于32Mb。
    1988: 光计算机投入开发,用光子代替电子,可以提高计算机的处理速度。
    1988: XMS标准建立。
    1988:
    EISA标准建立。
    1988 6月6日: 80386 SX为了迎合低价电脑的需求而发布。
    1988年7月到8月: PC-DOS 4.0、MS-DOS 4.0。支持EMS内存。但因为存在BUG,后来又陆续推出4.01a。
    1988年9月: IBMPS/20 286发布,基于80286处理器,没有使用其微通道总线。但其他机器继续使用这一总线。
    1988年10月: Macintosh Iix发布。基于Motorola 68030处理器。仍使用16 MHz主频、每秒390万条指令,支持128M RAM。
    1988年11月: MS-DOS 4.01、PC-DOS 4.01发布。
    1989:
    Tim Berners-Lee 创立World Wide Web雏形,他工作于欧洲物理粒子研究所。通过超文本链接,新手也可以轻松上网浏览。这大大促进了INTERNET的发展。
    1989: Phillips和Sony发布CD-I标准。
    1989年1月: Macintosh SE/30 发布。基于新型68030处理器。
    1989年3月: E-IDE标准确立,可以支持超过528MB的硬盘容量。可达到 33.3 MB/s 的传输速度。并被许多CD-ROM所采用。
    1989年4月10日: 80486 DX发布,集成120万个晶体管。 其后继型号时钟频率达到100MHz。
    1989年11月: Sound Blaster Card(声卡)发布。
    1990:
    SVGA标准确立。
    1990年3月 : Macintosh Iifx发布,基于68030CPU,主频40MHz,使用了更快的SCSI接口。
    1990年5月22日: 微软发布Windows 3.0。兼容MS-DOS模式。
    1990年10月: Macintosh Classic发布,有支持到256色的显示适配器。
    1990年11月: 第一代MPC (多媒体个人电脑标准)发布。处理器至少80286/12MHz,后来增加到80386SX/16 MHz ,及一个光驱,至少150 KB/sec的传输率。
    1939-40年,Schreyer 完成了用真 位加数器,以及用氖气灯(霓虹灯)的存贮器。
    1940年1月,在 Bell Labs, Samuel )” 。它用电话开关部份做逻辑部件: 电器,10个横杠开关。数字用“Plus 3BCD”代表。在同年9月,电传打字 etype 安装在一个数学会议里,由New 接去纽约。

    电脑 原理

        

    个人电脑(PC:personal computer )的主要结构:主机:主板、CPU (中央处理器)、主要储存器 (内存 )、扩充卡(显示卡 声卡 网卡等 有些主板可以整合这些)、电源供应器、光驱、次要储存器 (硬盘)、软驱 外设:显示器、键盘、鼠标 (音箱、摄像头,外置调制解调器MODEM 等),尽管计算机技术自20世纪40年代 第一台电子通用计算机诞生以来有了令人目眩的飞速发展,但是今天计算机仍然基本上采用的是存储程序结 构,即冯·诺伊曼结构。这个结构实现了实用化的通用计算机。 存储程序结构间将一台计算机描述成四个主 要部分:算术逻辑单元(ALU),控制电路,存储器,以及输入输出设备(I/O)。这些部件通过一组一组的 排线连接(特别地,当一组线被用于多种不同意图的数据传输时又被称为总线),并且由一个时钟来驱动( 当然某些其他事件也可能驱动控制电路)。概念上讲,一部计算机的存储器可以被视为一组“细胞”单元。 每一个“细胞”都有一个编号,称为地址;又都可以存储一个较小的定长信息。这个信息既可以是指令(告 诉计算机去做什么),也可以是数据(指令的处理对象)。原则上,每一个“细胞”都是可以存储二者之任 一的。

    算术逻辑单元(ALU)可以被称作计算机的大脑。它可以做两类运算:第一类是算术运算,比如对两个数 字进行加减法。算术运算部件的功能在ALU中是十分有限的,事实上,一些ALU根本不支持电路级的乘法和除 法运算(由是使用者只能通过编程进行乘除法运算)。第二类是比较运算,即给定两个数,ALU对其进行比较 以确定哪个更大一些。输入输出系统是计算机从外部世界接收信息和向外部世界反馈运算结果的手段。对于 一台标准的个人电脑,输入设备主要有键盘和鼠标,输出设备则是显示器,打印机以及其他许多后文将要讨 论的可连接到计算机上的I/O设备。控制系统将以上计算机各部分联系起来。它的功能是从存储器和输入输出 设备中读取指令和数据,对指令进行解码,并向ALU交付符合指令要求的正确输入,告知ALU对这些数据做哪些运算并将结果数据返回到何处。控制系统中一个重要组件就是一个用来保持跟踪当前指令所在地址的计数 器。通常这个计数器随着指令的执行而累加,但有时如果指令指示进行跳转则不依此规则。

    电脑处理器电脑处理器

    20世纪80年代以来ALU和控制单元(二者合成中央处理器,CPU)逐渐被整合到一块集成电路上,称作微处理器。这类计算机的工作模式十分直观:在一个时钟周期内,计算机先从存储器中获取指令和数据,然后执 行指令,存储数据,再获取下一条指令。这个过程被反复执行,直至得到一个终止指令。由控制器解释,运 算器执行的指令集是一个精心定义的数目十分有限的简单指令集合。一般可以分为四类:1)、数据移动(如 :将一个数值从存储单元A拷贝到存储单元B)2)、数逻运算(如:计算存储单元A与存储单元B之和,结果返 回存储单元C)3)、条件验证(如:如果存储单元A内数值为100,则下一条指令地址为存储单元F)4)、指 令序列改易(如:下一条指令地址为存储单元F)

    指令如同数据一样在计算机内部是以二进制来表示的。比如说,10110000就是一条Intel x86系列微处理 器的拷贝指令代码。某一个计算机所支持的指令集就是该计算机的机器语言。因此,使用流行的机器语言将会使既成软件在一台新计算机上运行得更加容易。所以对于那些机型商业化软件开发的人来说,它们通常只 会关注一种或几种不同的机器语言。 更加强大的小型计算机,大型计算机和服务器可能会与上述计算机有所 不同。它们通常将任务分担给不同的CPU来执行。今天,微处理器和多核个人电脑也在朝这个方向发展。超计算机通常有着与基本的存储程序计算机 类的电子控制开关来实现使用2们通常有着数以千计的CPU,不过这 些设计似乎只对特定任务有用。在各种计算机中,还有一些微控制器采用令程序和数据分离的哈佛架构 (Harvard architecture)。

    电脑 输入输出设备

         输入输出设备

    输入输出设备(Input/Output,I/O)是对将外部世界信息发送给计算机的设备和将处理结果返回给外部 世界的设备的总称。这些返回结果可能是作为使用者能够视觉上体验的,或是作为该计算机所控制的其他设备的输入:对于一台机器人,控制计算机的输出基本上就是这台机器人本身,如做出各种行为。

    第一代计算机的输入输出设备种类非常有限。通常的输入用设备是打孔卡片的读卡机,用来将指令和数据导入内存;而用于存储结果的输出设备则一般是磁带。随着科技的进步,输入输出设备的丰富性得到提高。 以个人计算机为例:键盘和鼠标是用户向计算机直接输入信息的主要工具,而显示器、打印机、扩音器、耳 机则返回处理结果。此外还有许多输入设备可以接受其他不同种类的信息,如数码相机可以输入图像。

    在输入输出设备中,有两类很值得注意:第一类是二级存储设备,如硬盘,光碟或其他速度缓慢但拥有很 高容量的设备。第二个是计算机网络访问设备,通过他们而实现的计算机间直接数据传送极大地提升了计算机的价值。今天,国际互联网成就了数以千万计的计算机彼此间传送各种类型的数据。

    电脑 程序

         程序

    计算机程序就是计算机执行指令的一个序列。它既可以只是几条执行某个简单任务的指令,也可能要操作 巨大数据量的复杂指令队列。许多计算机程序包含有百万计的指令,而其中很多指令可能被反复执行。在2005年,一台典型的个人电脑可以每秒执行大约30亿条指令。计算机通常并不会执行一些很复杂的指令来获 得额外的机能,更多地它们是在按照程序员的排列来运行那些较简单但为数众多的短指令。 一般情况下,程 序员们是不会直接用机器语言来为计算机写入指令的。那么做的结果只能是费时费力、效率低下而且漏洞百 出。所以,程序员一般通过“高级”一些的语言来写程序,然后再由某些特别的计算机程序,如解释器或编 译器将之翻译成机器语言。一些编程语言看起来很接近机器语言,如汇编程序,被认为是低级语言。而另一 些语言,如即如抽象原则的Prolog,则完全无视计算机实际运行的操作细节,可谓是高级语言。对于一项特 定任务,应该根据其事务特点,程序员技能,可用工具和客户需求来选择相应的语言,其中又以客户需求最 为重要(美国和中国军队的工程项目通常被要求使用Ada语言)。

    计算机软件是与计算机程序并不相等的另一个词汇。计算机软件一个较为包容性较强的技术术语,它包含 了用于完成任务的各种程序以及所有相关材料。举例说,一个视频游戏不但只包含程序本身,也包括图片、 声音以及其他创造虚拟游戏环境的数据内容。在零售市场,在一台计算机上的某个应用程序只是一个面向大 量用户的软件的一个副本。这里老生常谈的例子当然还是微软的office软件组,它包括一些列互相关联的、 面向一般办公需求的程序。 利用那些极其简单的机器语言指令来实现无数功能强大的应用软件意味着其编程 规模注定不小。Windows XP这个操作系统程序包含的C++高级语言源代码达到了4000万行。当然这还不是最大 的。如此庞大的软件规模也显示了管理在开发过程中的重要性。实际编程时,程序会被细分到每一个程序员 都可以在一个可接受的时长内完成的规模。 即便如此,软件开发的过程仍然进程缓慢,不可预见且遗漏多多 。应运而生的软件工程学就重点面向如何加快作业进度和提高效率与质量。

    电脑 库与操作系统

         操作系统

    在计算机诞生后不久,人们发现某些特定作业在许多不同的程序中都要被实施,比如说计算某些标准数学函数。出于效率考量,这些程序的标准版本就被收集到一个“库”中以供各程序调用。许多任务经常要去额外处理种类繁多的输入输出接口,这时,用于连接的库就能派上用场。

    20世纪60年代,随着计算机工业化普及,计算机越来越多地被用作一个组织内不同作业的处理。很快,能够自动安排作业时续和执行的特殊软件出现了。这些既控制硬件又负责作业时序安排的软件被称为“操作系统”。一个早期操作系统的例子是IBM的OS/360。 在不断地完善中,操作系统又引入了时间共享机制——并 发。这使得多个不同用户可以“同时”地使用机器执行他们自己的程序,看起来就像是每个人都有一台自己 的计算机。为此,操作系统需要像每个用户提供一台“虚拟机”来分离各个不同的程序。由于需要操作系统控制的设备也在不断增加,其中之一便是硬盘。因之,操作系统又引入了文件管理和目录管理(文件夹), 大大简化了这类永久储存性设备的应用。此外,操作系统也负责安全控制,确保用户只能访问那些已获得允 许的文件。 当然,到目前为止操作系统发展历程中最后一个重要步骤就是为程序提供标准图形用户界面 (GUI)。尽管没有什么技术原因表明操作系统必须得提供这些界面,但操作系统供应商们总是希望并鼓励那 些运行在其系统上的软件能够在外观和行为特征上与操作系统保持一致或相似。

    除了以上这些核心功能,操作系统还封装了一系列其他常用工具。其中一些虽然对计算机管理并无重大意义,但是于用户而言很是有用。比如,苹果公司的Mac OS X就包含视频剪辑应用程序。 一些用于更小规模的 计算机的操作系统可能没用如此众多的功能。早期的微型计算机由于记忆体和处理能力有限而不会提供额外 功能,而嵌入式计算机则使用特定化了的操作系统或者干脆没有,它们往往通过应用程序直接代理操作系统的某些功能。

    电脑 应用

         应用

    由电脑控制的机械在工业中十分常见。 很多现代大量生产的玩具,如Furby,是不能没有便宜的嵌入式处理器。

    起初,体积庞大而价格昂贵的数字计算机主要是用做执行科学计算,特别是军用课题。如ENIAC最早就是 被用作火炮弹道计算和设计氢弹时计算断面中子密度的(如今许多超级计算机仍然在模拟核试验方面发挥着巨大作用)。澳大利亚设计的首台存储程序计算机CSIR Mk I型负责对水电工程中的集水地带的降雨情形进行 评估。还有一些被用于解密,比如英国的“巨像”可编程计算机。除去这些早年的科学或军工应用,计算机 在其他领域的推广亦十分迅速。 从一开始,存储程序计算机就与商业问题的解决息息相关。早在IBM的第一 台商用计算机诞生之前,英国J. Lyons等就设计制造了LEO以进行资产管理或迎合其他商业用途。由于持续的 体积与成本控制,计算机开始向更小型的组织内普及。加之20世纪70年代微处理器的发明,廉价计算机成为了现实。

    80年代,个人计算机全面流行,电子文档写作与印刷,计算预算和其他重复性的报表作业越来越多地开始 依赖计算机。 随着计算机便宜起来,创作性的艺术工作也开始使用它们。人们利用合成器,计算机图形和动 画来创作和修改声音,图像,视频。视频游戏的产业化也说明了计算机在娱乐方面也开创了新的历史。 计算 机小型化以来,机械设备的控制也开始仰仗计算机的支持。其实,正是当年为了建造足够小的嵌入式计算机 来控制阿波罗宇宙飞船才刺激了集成电路技术的跃进。今天想要找一台不被计算机控制的有源机械设备要比 找一台哪怕是部分计算机控制的设备要难得多。可能最著名的计算机控制设备要非机器人莫属,这些机器有 着或多或少人类的外表和并具备人类行为的某一子集。

    在批量生产中,工业机器人已是寻常之物。不过,完全的拟人机器人还只是停留在科幻小说或实验室之中 。机器人技术实质上是人工智能领域中的物理表达环节。所谓人工智能是一个定义模糊的概念但是可以肯定的是这门学科试图令计算机拥有目前它们还没有但作为人类却固有的能力。数年以来,不断有许多新方法被 开发出来以允许计算机做那些之前被认为只有人才能做的事情。比如读书、下棋。然而,到目前为止,在研制具有人类的一般“整体性”智能的计算机方面,进展仍十分缓慢。

    随着电脑越来越普及,电脑几乎进入了所有的行业,扮演着举足轻重的角色。它已经成为当今社会得以正 常运行不可缺少的工具,电脑在我们的现代人的生活中占据着如此重要的地位,人们对电脑的依赖性如此之 高,真不敢想象,没有了电脑我们的生活会变成什么样子。所以学习电脑常识和掌握使用电脑方法以及处理 一般的电脑故障是必不可少的。

    电脑常识网提供有关各种电脑故障处理,维修电脑,windows系统问题,电脑组装,电脑硬件,电脑软件,电 脑专业系统知识以及电脑安全防御,病毒木马,使用电脑技巧等最基本的电脑常识,电脑故障分析,网页制作 ,图象设计,电脑市场行情,介绍品牌电脑,最新的电脑发展动态,IT新闻,以及购买电脑技巧等方面最新最全 ,最权威的一切有关电脑的文章。倾力打造最强的电脑资讯信息站。

    电脑 处理器

         电脑处理器

    处理器是解释并执行指令的功能部件。每个处理器都有一个独特的诸如ADD、STORE或LOAD这样的操作集, 这个操作集就是该处理器的指令系统。计算机系统设计者习惯将计算机称为机器,所以该指令系统有时也称作机器指令系统,而书写它们的二进制语言叫做机器语言——注意:不要将处理器的指令系统与BASIC或 PASCAL这样的高级程序设计语言中的指令相混淆——指令由操作码和操作数组成,操作码指明要完成的操作 功能,而操作数则表示操作的对象。

    例如,一条指令要完成两数相加的操作,它就必须知道:1.这两个数是什么? 2.这两个数在哪儿?当这两 个数存储在计算机内存中时,则应有指明其位置的地址,所以如果操作数表示的是计算机内存中的数据,则 该操作数叫做地址。处理器的工作就是从存储器中找到指令和操作数,并执行每个操作,完成这些工作后就 通知存储器送来下一条指令。处理器以惊人的速度一遍又一遍地重复以上这一步步的操作。一个称作时钟的计时器准确地发出定时电信号,该信号为处理器工作提供有规律的脉冲。测量计算机速度的术语引自电子工 程领域,称作兆赫(MHz),兆赫意指每秒百万个周期。

    例如,普通时钟每秒一个滴答,而在8MHz的处理器中,计算机的时钟则滴答了8百万次。处理器由两个功 能部件(控制部件和算逻部件)和一组称作寄存器的特殊工作空间组成。控制部件是负责监督整个计算机系统操作的功能部件。有些方面它类似于智能电话交换机,因为它将计算机系统的各功能部件连结起来,并根据 当前执行程序的需要控制每个部件完成操作。控制部件从存储器中取出指令,并确定其类型或对之进行译码 ,然后将每条指令分解成一系列简单的、很小的步骤或动作。这样,就可控制整个计算机系统一步一步地操作。. 算逻部件(ALU)是为计算机提供逻辑。

    处理器发展历史

    1940年, Zuse 终于完成Z2,它比V2运作得更好,但不是太可靠。
    1941年夏季,Atanasoff及Berry完成了一部专为解决联立线性方程系统(system of simultaneous linear equations) 的计算器,后来叫做"ABC (Atanasoff-Berry Computer)”,它有60个50位的存贮器,以电容器(capacitories)的形式安装在2个旋转的鼓上,时钟速度是60Hz。
    1941年2月,Zuse 完成"V3”(后来叫Z3),是第一部操作中可编写程序的计数机。它亦是用浮点操作,有7个位的指数,14位的尾数,以及一个正负号。存贮器可以贮存64个字,所以需要1400个断电器。它有多于1200个的算术及控制部件,而程序编写,输入,输出的与 Z1 相同。 1943年1月 Howard H. Aiken完成"ASCC Mark I”(自动按序控制计算器 Mark I ,Automatic Sequence —— Controlled Calculator Mark I),亦称“Haward Mark I”。这部机器有51尺长,重5顿,由 750,000部份合并而成。它有72个累加器,每一个有自己的算术部件,及23位数的寄存器。
    1943年12月, Tommy Flowers与他的队伍,完成第一部“Colossus”,它有2400个真空管用作逻辑部件,5 个纸带圈读取器(reader),每个可以每秒工作5000字符。
    1943年,由 John Brainered领导, 及J. Presper Eckert负责这计划的执行。
    1946年,第一台电子数字积分计算器(ENIAC)在美国宾夕法尼亚大学建造完成。
    1947年,美国计算器协会(ACM)成立。
    1947年,英国完成了第一个存储真空管O 1948贝尔电话公司研制成半导体。
    1949年,英国建造完成"延迟存储电子自动计算器"(EDSAC)
    1950年,"自动化"一词第一次用于汽车工业。
    1951年,美国麻省理工学院制成磁心
    1952年,第一台"储存程序计算器"诞生。
    1952年,第一台大型计算机系统IBM701宣布建造完成。
    1952年,第一台符号语言翻译机发明成功。
    1954年,第一台半导体计算机由贝尔电话公司研制成功。
    1954年,第一台通用数据处理机IBM650诞生。
    1955年,第一台利用磁心的大型计算机IBM705建造完成。
    1956年,IBM公司推出科学704计算机。
    1957年,程序设计语言FORTRAN问世。

    电脑 种类

        

    ●传统的分类 过去曾习惯地把计算机分成巨、大、中、小、微五类,即巨型机、大型机、中型机、小型机、微型机。 1989年11月美国IEEE(电子电器工程师学会)的一个专门委员会根据计算机种类的演变过程和趋势,把当时的

    计算积分为六大类:

    大型主机(Mainframe)  包括过去所说的大型机和中型机 小型计算机(Minicomputer) 又称迷你电脑  个人计算机 (Personal Computer) 又称个人电脑,简称PC机,即通常我们所说的微型计算机 工作站(Workstation) 包括工程工作站,图形工作站等 巨型计算机(Supercomputer) 又称超级计算机,超级电脑 小巨型机(Mini Super)  又称小超级计算机。但是这种分法已经过时了● 现实的分法现在计算机市场已经发生重大变革,我们也应该考虑如何对日常工作中遇到的计算机进行现实的分类。现在,我们把它分为服务器、工作站、台式机、便携机、手持设备五大类。

     服务器(Server)它有功能强大的处理能力容量很大的存储器以及快速的输入输出通道和联网能力通常它的处理器也用高端微处理器芯片组成  工作站(Workstation),它与高端微机的差别主要表现在工作站通常要与一个屏幕较大的显示器,以便显示设计图,工程图和控制图等。  台式机(Desktop PC),它就是通常所说的微型机,由主机箱,显示器,键盘,鼠标等组成。  笔记本(Notebook)又称便携机或移动PC(Mobile PC),现在它的功能已经和台式机不相上下,但体积小,重量轻,价格也已相差无几。 手持设备又称掌上电脑(Handheld PC)或称亚笔记本(Sub-notebook),亚笔记本比笔记本更小更轻。

     其他的手持设备则有PDA(个人数字助理),商务通,快译通以及第二代半,第三代手机等。

    电脑 操作系统

        

     Linux   RedHat Linux RedFlag Linux Ubuntu Linux Windows: Microsoft Windows  95/98/Me/NT/2000/xp/2003/Vista Microsoft Windows Server 2000/2003 DOS:MS-DOS  其他:  Unix 中国科学院 麒麟操作系统。 Unix 中国科学院 麒麟操作系统 是苹果麦金塔电脑之操作系统软件的 Mac OS 最新版本。 

    电脑 应用范围

         笔记本

    ●数值计算
      在科学研究和工程设计中,存在着大量繁烦、复杂的数值计算问题,解决这样的问题经常是人力所无法胜任的。而高速度,高精度地解算复杂的数学问题正是电子计算机的特长。因而,时至今日,数值计算仍然是计算机应用的一个重要领域。
    ●数据处理
      就是利用计算机来加工、管理和操作各种形式的数据资料。数据处理一般地总是以某种管理为目的的。例如,财务部门用计算机来进行票据处理、账目处理和结算;人事部门用计算机来建立和管理人事档案,等等。
      与数值计算有所不同,数据处理着眼于对大量的数据进行综合和分析处理。一般不涉及复杂的数学问题,只是要求处理的数据量极大而且经常要求在短时间内处理完毕。
    ●实时控制
      也叫做过程控制,就是用计算机对连续工作的控制对象实行自动控制。要求计算机能及时搜集检测信号,通过计算处理,发出调节信号对控制对象进行自动调节。过程控制应用中的计算机对输入信息的处理结果的输出总是实时进行的。例如,导弹的发射和制导过程中,总是不停地测试当时的飞行参数,快速地计算和处理,不断地发出控制信号控制导弹的飞行状态,直至到达即定的目标为止。实时控制在工业生产自动化、军事等方面应用十分广泛。
    ●计算机辅助设计(CAD)
      就是利用计算机来进行产品的设计。这种技术已广泛地应用于机械、船舶、飞机、大规模集成电路版图等方面的设计。利用CAD技术可以提高设计质量,缩短设计周期,提高设计自动化水平。例如,计算机辅助制图系统是一个通用软件包,它提供了一些最基本的作图元素和命令,在这个基础上可以开发出各种不同部门应用的图库。这就使工程技术人员从繁重的重复性工作中解放出来。从而加速产品的研制过程,提高产品质量。
      CAD技术迅速发展,其应用范围日益扩大,又派生出许多新的技术分支,如计算机辅助制造CAM,计算机辅助教学CAI等。
    ●模式识别
      是一种计算机在模拟人的智能方面的应用。例如,根据频谱分析的原理,利用计算机对人的声音进行分解、合成,使机器能辨识各种语音,或合成并发出类似人的声音。又如,利用计算机来识别各类图像、甚至人的指纹等等。
      综上所述,计算机是对输入的各类信息,如数值、文字、图像、电信号等等,自动高效地进行加工处理并输出结果的电子装置。 

    电脑 注意事项

        

    开关机
    ●计算机设备一定要正确关闭电源,,否则会影响其工作寿命,也是一些故障的罪魁祸首。正确的电脑开关机顺序是:开机,先接通并开启计算机的外围设备电源(如显示器,打印机等),然后再开启计算机主机电源;关机顺序正好相反,先关主机电源,然后再断开其他外围设备的电源。
    计算机设备使用安全须知
    ●计算机设备不宜放在灰尘较多的地方(比如靠近路边的窗口等),实在没有条件换地方的,应该能用防尘罩等在不使用的时候盖好;不宜放在较潮湿的地方(比如说水瓶集中处,饮水机等的旁边,人倒水容易将水溅到设备上),还有就是注意主机箱的散热,避免阳光直接照射到计算机上;
    ●计算机专用电源插座上应严禁再使用其他电器,暖手炉等个人电器设备,下班时应该检查电脑设备是否全部关闭后再离开;
    ●不能在计算机工作的时候搬动计算机;
    ●切勿在计算机工作的时候插拔设备,频繁地开关机器,带电插拨各接口(除USB接口),容易烧毁接口卡或造成集成块的损坏;
    ●防静电,防灰尘,不能让键盘,鼠标等设备进水;
    ●定期对数据进行备份并整理磁盘。由于硬盘的频繁使用,病毒,误操作等,有些数据很容易丢失。所以要经常对一些重要的数据进行备份,以防止几个月完成的工作因备份不及时而全部丢失。经常整理磁盘,及时清理垃圾文件,以免垃圾文件占用过多的磁盘空间,还给正常文件的查找和管理带来不便,不仅容易将重要文件删除,还会在急用时找不到需要的文件等等问题;
    ●发现问题要及时报修,使机器始终工作于较好状态.包括:设备是否有异常问题各个接线是否松动等;
    ●预防计算机病毒,装杀毒软件,定期升级并且查杀病毒。
    使用上注意的几点:
    ●自动链接到一些陌生的网站。上网时要注意,不懂的东西不要乱点,尤其是一些色情类的图片,广告漂浮在浏览器页面当中的,不要点击它;如果它影响你浏览网页,就上下拖动滑动条,直到最佳视角为止。另外,一些上网插件尽量不要装。还有不要安装上网助手及其工具栏,这类软件有时会影响浏览器的正常使用。
    ●不要随便下载和安装互联网上的一些小的软件或者程序.
    ●陌生人发来的电子函件。收到陌生人发来的电子函件,尤其是那些标题很具诱惑力,比如一则笑话,或者一封情书等,又带有附件的电子函件。
    ●使用优盘前先进行查杀病毒操作,定期用防病毒软件检测系统有没有病毒。

    电脑 病毒

        

     电脑病毒在《中华人民共和国计算机信息系统安全保护条例》中被明确定义,病毒指“编制或者在电脑程序中插入的破坏电脑功能或者破坏数据,影响电脑使用并且能够自我复制的一组电脑指令或者程序代码”。

    网络病毒
    计算机病毒发作时常见的几点表现
    1、运行速度明显变慢。
    2、以前能正常运行的软件经常发生内存不足的错误。
    3、提示一些不相干的话。
    4、产生特定的图象。
    5、未做什么操作,硬盘灯不断闪烁。
    6、Windows桌面图标发生变化。
    7、计算机突然死机或重启。
    8、自动发送电子函件。
    9、鼠标自动处于繁忙状态。
    计算机遭遇病毒可能产生的不良后果:
    1、硬盘无法启动,数据丢失。
    2、系统文件丢失或被破坏。
    3、文件目录发生混乱。
    4、部分文档丢失或被破坏。
    5、部分文档自动加密码。
    6、网络瘫痪,无法提供正常的服务。

    电脑 中国十大影响力电脑品牌

        

    联想 方正 同方 神舟 TCL 宏碁 长城 海尔 新蓝 海信[1]